
pg. 1

Does the Ear of the Eigenface Hear the Eigensound?
Application of PCA in Music Classification

Kate Li1, Dan Sadatian1, Benjamin Zivan1

1Georgia Institute of Technology

Abstract
In this project, we explore the classification of audio files, specifically music pieces ranging from the classical
solo piano (Chopin, Mozart, and Liszt), pop music (Adele and Billboard top 30 pop songs) to jazz.
Considering the immense feature-space of our data (220,500 features per 5-second sample), exploitation of
eigensounds has formed the principal components of our data preprocessing. Specifically, considering low-
throughput networks that are still standard in many places worldwide and the amount of data available and
needed for training a useful model, we have focused on minimizing the amount of sound data (quality and
decomposition) needed for fast and accurate classification.

Background and Motivations

Our problem lies at the intersection of Music Structural Analysis ("MSA"), a subfield of Music Information
Retrieval (Müller 2015), a.k.a Music Informatics Research (Nieto 2020) ("MIR") and general machine
learning algorithm comparison. In this problem domain, the neural network (NN) family of models,
particularly convolutional neural networks (CNN), meet with great favor among researchers (Nasrullah
2019; Haunschmid 2020) due to their abilities to identify the key structural elements of the musical piece,
such as the chorus of a pop song or motif of a symphonic movement. Preprocessing for these models using
raw audio data generally involves converting the audio information via Fourier Transform into mel-
spectrograms (Müller 2015; Huang 2018), which display the intensity of a given frequency per time window.
A related approach that is sometimes used is a 'chromograph' (Kirkbride 2015), which maps frequency
information directly onto the Western 12-semitone chromatic scale, but since this approach obfuscates
intervals that span more than an octave (e.g., a ninth), the spectrogram is the standard approach. It has
also been shown that using a spectrogram instead of raw audio data can increase modeling accuracy1.
Where many papers in this domain focus on genre classification using tagged datasets such as artist202 or
GTZAN3, we were interested in working solely with the music itself to see the extent to which dimensionality

1 https://github.com/derekahuang/Music-Classification
2 http://labrosa.ee.columbia.edu/projects/artistid/
3 https://www.kaggle.com/andradaolteanu/gtzan-dataset-music-genre-classification/

pg. 2

reduction via Principal Component Analysis (PCA) in combination with non-neural network (nonNN)
models (e.g., k-NN, Naive Bayes) can classify with similar accuracy as neural networks but with greater
speed. Again, we are considering low-throughput data networks in this project, so any method that
reduces computational resource overhead versus neural networks while maintaining acceptable accuracy
would be preferable.

As we have seen in this class, PCA works by performing eigendecomposition on the covariance matrix
of the data:

For every principal component 𝑘 we calculate: w(ֆ) = arg max
wϫXࣨֆ

ϫXࣨֆw

wϫw
 for Xࣨֆ = X − ంXw(ք)w(ք)ϫ

ֆ−φ

ք=φ

This assumption underlying PCA is that variance of the data is the most important differentiation factor.
This is because the variance of the orthogonal dimensions represented by the eigenvectors is highest for
the eigenvector with the largest eigenvalue.

Data Source

We use the public-domain music library4, The Internet Archive5, and Piano Society6 for all audio files
as our primary data source. We decided to pick three composers, Chopin, Mozart, and Liszt, from two
classical music periods with distinct characteristics. Since Chopin only has piano music, we use only
piano music from Mozart and Liszt to minimize the variance arising from musical instruments'
characteristics. We picked a jazz ensemble with piano to keep the similarity in musical instrumentation
for the 'jazz' samples.

In addition to instrumental music, we add in the mix of vocal music by including one Adele album as

an audio file and a compiled audio file of recent top 30 Billboard pop songs. Vocal music productions

typically include a wider range of timbres and therefore tend to have more mixing and more layers on

the production level. We explore how this impacts the results of the classification models.

4 https://imslp.org/wiki/Main_Page
5 https://archive.org/details/audio
6 https://www.pianosociety.com/pages/mozart_sonatas/

pg. 3

Methodology
Wrangling
A substantial portion of our task is to develop a fast process to transform songs into uniform samples for
training and testing purposes.

Data is first downloaded to our local system for improved accessibility. All songs are then standardized
from double-channel to single-channel (mono) arrays using the audio2numpy and NumPy libraries. We then
homogenize all arrays into a standard sample rate using the SoXR library.

Preprocessing
We normalize the data by max-min scaling to the range of [0, 1] and standardize features by removing
the mean and scaling to unit variance using the sklearn.preprocessing module. At this stage, we perform
PCA for each composer's matrix to produce the composer' Eigensounds.'

Eigensounds
We export the eigensounds and evaluate what the eigensounds capture. Here are a few observations:

1. The eigensounds capture the most prominent features of the audio files.
a. We could hear choruses of the vocal songs and the climax of instrumental music
b. We speculate that the features captured are the segments of a music piece that has the

largest volume
c. This implies that the larger volume features/data-points dominant lower volume

features/data-points
2. Eigensounds capture complete musical passages for different pieces of the music and overlaps

them.
3. The jazz piece and the top billboard songs are harder to recognize any melody than the other files.

This could be due to:
a. These more modern musical genres consist of more musical dissonances than the other

musical genres, so the melody of the original files are hard to recognize
b. These original files consist of complicated instrumentation. While capturing the

eigensounds through PCA, an instrument is very likely to be mixed up with another
instrument with the same sound wavelength or frequency

Modeling
In this project, we apply various algorithms in an analogous fashion to that of image classification to our
sample chunks of music. Our model then classifies the randomly-chosen test samples according to the
entire music sample from which the test samples were extracted.

We selected six different models to investigate various approaches to classification: from linear and
density-based models to ensemble and neural networks. We performed a repeated 5-Fold cross-validation
for the following models: Gaussian Naïve Bayes (NB), Support Vector Machine (SVM), k-Nearest

pg. 4

Neighbor (k-NN), Random Forest (RF), Linear Discriminant Analysis (LDA), and Multi-Layer
Perceptron (MLP).

We then chose the best models in terms of accuracy and time and evaluated them against a more
optimized MLP NN. This step highlights how nonNN models can potentially perform this approach to
music classification with comparable accuracy to NN at a fraction of processing cost.

In addition to model selection and comparison to a neural network model, we also want to explore how
the results change when we change the number of dimensions in PCA. Here we can see how a reduction
in the number of PCs increases the overall cross-validated accuracy of our models by reducing the
overfitting and 'noise' in our data:

Averages of 5 Repetitions

5-folds Cross-Validated

 NB w/ 30 PCA NB w/ 5 PCA

 Accuracy 90.57% (±1.38%) 95.24% (±0.68%)

 Time 13.93ms 11.79ms

 NB w/ 25 PCA NB w/ 3 PCA

 Accuracy 91.43% (±1.22%) 96.14% (±0.72%)

 Time 13.78ms 11.86ms

 NB w/ 15 PCA NB w/ 2 PCA

 Accuracy 94.24% (±1.07%) 96.41% (±0.63%)

 Time 13.17ms 10.98ms

 NB w/ 7 PCA NB w/ 1 PCA

 Accuracy 94.86% (±0.87%) 96.75% (±0.65%)

 Time 13.11ms 11.44ms

pg. 5

Evaluation
First, we identify the most efficient models in terms of processing time-accuracy trade-offs. Then, we run
all models for both before and after PCA.

Without PCA With Scaling and PCA
Averages of 2 Repetitions Averages of 10 Repetitions

5-folds Cross-Validated 5-folds Cross-Validated

NB
Accuracy: 83.56% (±1.21%) 96.67% (±0.69%)
Time: 3.09ms 11.00ms

SVM
Accuracy: 87.08% (±0.97%) 87.98% (±0.87%)
Time: 162.55ms 194.31ms

𝑘NN
Accuracy: 65.02% (±1.62%) 96.51% (±0.75%)
Time: 1.37ms 10.81ms

RF
Accuracy: 83.59% (±0.42%) 76.65% (±2.23%)
Time: 597.83ms 154.93ms

LDA
Accuracy: 65.08% (±1.68%) 70.05% (±1.66%)
Time: 62.12ms 11.48ms

MLP
Accuracy: 72.12% (±19.75%) 95.18% (±4.80%)
Time: 2760.54ms 1861.52ms

We can see that the k-NN model consistently has the fastest processing times. NB has the highest accuracy
after PCA and moderately high accuracy without PCA. Although SVM has a high accuracy before PCA,
the accuracy drops by 13% with PCA. Considering the volatility, we will pick k-NN and NB models to
compare with the MLP neural network model.

Comparing the k-NN model and NB model with a more optimized MLP model (with comparable
accuracy), we get the classification results as follows:

pg. 6

Figure 2: k-NN Model Confusion Matrix

Figure 3: NB Model Confusion Matrix

pg. 7

Figure 4: MLP Model Confusion Matrix

From the confusion matrix, we could see that the prediction accuracies for these three models are
relatively the same. We then time the three models. NB took the shortest time of 1.36ms per run for
7,000 runs. In comparison, our partially optimized MLP model took 3.44s per run to complete 7 runs

(~2530 times slower than NB). With such a high time-accuracy trade-off, we do not believe using an

MLP model is justified in this scenario.

As the next step for exploration, we tested different PCA dimensions and ran the same results. We
observed that as we reduce the PCA dimensions, the models become more accurate. This could be because
a lower PCA dimension reduces the noise level of the dataset and reduces over-fitting in our models. As
we discovered while listening to the eigensounds, only the loudest melodies or most prominent features
are captured in eigensound.

Conclusions and Next Steps

In a nutshell, we could produce eigensound for musical files and use it to successfully classify test samples
with near-perfect accuracy using a resolution sample rate of 50 Hz (a 99.9% reduction in file content) for
5 seconds. Listening to these eigensounds, our impression is that the eigendecomposition of the raw music
arrays generally results in components that capture the loudest melodies of each sample. These results
held whether with solo instrumental music, ensemble music, or even vocal ensembles with both traditional
and electronic instruments.

pg. 8

Based on our results, we recommend using NB model for eigensound classifications over NN and other
commonly used classification models. As a next step, we could implement our findings in a broader
context:

1. Delve deeper into the effect of PCA dimensions on audio file classification
2. Apply the model further into song identification for songs in similar genres
3. Discover any applicable use cases in the realm of audio recognition

As we seek to dive deeper at capturing the unique style of a given musical artist (e.g. could we train a model
using only Mozart's operas but still recognize his piano works in the test set), one area, in particular, we would

like to explore is the efficacy of tensor decomposition methods versus the eigensound approach. An algorithm
making use of Nonnegative Tucker Decomposition ("NTD") explored in Marmoret, et al. (2021) has
shown promise in increased accuracy of segmentation analysis when used in combination with the β-
distance and log-mel spectrograms. This might prove useful in extending our basic eigensound approach
to more complex problems in the MSA problem space.

Contributions
We collaborated consistently throughout the final six weeks of this course, ensuring equal contribution during
this project with frequent group calls at each stage of the progress.

pg. 9

References

Haunschmid, Verena, et al. “AudioLIME: Listenable Explanations Using Source Separation.”
ArXiv:2008.00582 [Cs, Eess], Sept. 2020. arXiv.org, http://arxiv.org/abs/2008.00582.

Kirkbride, Ryan, and Kia Ng. Infinite Remix Machine: Automatic Analysis and Arrangement of Musical
Recordings. 2015. DOI.org (Crossref), https://doi.org/10.14236/ewic/eva2015.61.

Marmoret, Axel, et al. "Nonnegative Tucker Decomposition with Beta-Divergence for Music Structure
Analysis of Audio Signals." ArXiv:2110.14434 [Cs, Eess, Math], Nov. 2021. arXiv.org,
http://arxiv.org/abs/2110.14434.

Müller, Meinard. Fundamentals of Music Processing. 1st ed., Springer Berlin Heidelberg, 2015.

Nasrullah, Zain, and Yue Zhao. "Music Artist Classification with Convolutional Recurrent Neural
Networks." 2019 International Joint Conference on Neural Networks (IJCNN), IEEE, 2019, pp. 1–8.
DOI.org (Crossref), https://doi.org/10.1109/IJCNN.2019.8851988.

Nieto, Oriol, et al. "Audio-Based Music Structure Analysis: Current Trends, Open Challenges, and
Applications." Transactions of the International Society for Music Information Retrieval, vol. 3, no. 1,
Dec. 2020, pp. 246–63. DOI.org (Crossref), https://doi.org/10.5334/tismir.54.

